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Abstract 

The article is devoted to visualization of the results of experimental work aimed at study-
ing the turbulent flow of the coolant in the model of the lower chamber of a nuclear reactor. 
Using the method of tracer injection into one of the four loops of coolant circulation, we stud-
ied the mixing process of coolant flow in the lower chamber of the reactor. Based on the ex-
periment, the values of the tracer volume fraction at individual points of the model are ob-
tained. To visualize the results, the Matlab software package was used. Obtained during the 
processing of the experimental data, the tracer volume fraction fields in the characteristic ar-
eas of the lower chamber model made it possible to analyze the features of the motion and 
mixing of the loop coolant flows. The effect of swirling the coolant flow in the lower channel 
and in the lower pressure chamber of the model was experimentally obtained and visualized. 
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1. Introduction 
The creation of new pressurized water reactors requires a complex of research works to 
justify the safety of both new design solutions and reactor’s operation modes. Justification 
of thermal reliability is largely based on thermal-hydraulic calculation, which requires in-
formative and reliable parameters of the coolant, taking into account their local distribu-
tion inside the reactor. 
One of the issues of determining the thermal-hydraulic efficiency of the nuclear reactor is 
the study of the mixing processes of coolant flows entering the reactor's lower chamber 
through several circulation loops. Such studies allow us to clarify the temperature distribu-
tion at the core inlet and in the coolant circulation loops, which is especially important in 
the operation modes of a reactor with an asymmetric load [1-4]. The results of such studies 
are also necessary for calculating the distribution of boric acid concentration in the core 
when it is injected into the coolant [5-8]. 

2. Experimental facility 
Experimental facility FT-50 of Nizhny Novgorod State Technical University n.a. R.E. Ale-
kseev (Fig. 1) is an aerodynamic open loop. It was designed for research of local values of 
flow velocity and pressure, as well as mixing of coolant in models of main equipment of 
nuclear reactors [10-13]. The stand includes: high-pressure fan, receiver tank, pipeline sys-
tem, experimental model, measuring devices. 
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Fig. 1. General view of the experimental stand FT-50: 1 - high-pressure fan; 2 - receiver 

tank; 3 - pipeline system; 4 - experimental model of reactor pressure vessel. 

3. Experimental model 
The experimental model (Fig. 2) is a simplified scaled model of the pressure vessel of a nu-
clear reactor with four coolant circulation loops [14]. 
 

 
Fig. 2. Experimental model of reactor pressure vessel. 

 
The movement of the coolant is as follows: the coolant flows into the model through four 
radial pipes, then descends in an annular channel to the lower pressure chamber. From 
there it is distributed across the channels that simulate the reactor core. The pipes are lo-
cated at an angle of 90 degrees to each other. The core simulator is a set of nineteen throt-
tled vertical channels that simulate pressure drop in the core. 



4. Experimental research methodology 
Air was pumped into all four pipes of the model in the experiment. For three of the pipes, 
the air  pumped in was clean, and for the fourth one, the air contained a gaseous admix-
ture. This "asymmetric" mode is schematically shown in Fig 3. 
 

 
Fig. 3. "Asymmetric" mode organized in the experiment (top view of the model). 

 
The air flow rates in each loop were set and maintained the same. This paper presents re-
sults for one of the experimental modes, which corresponds to the value of the Reynolds 
number Re=20000. The Reynolds number was determined by the cross section of the de-
scending annular channel of the model. The series of experiments at the NNSTU test facili-
ties include variation of the Reynolds number by changing individual parameters con-
tained in it: flow velocity and kinematic viscosity (using different fluids - air and water and 
its heating), in the range Re=10000÷50000. 
The study of the features of the coolant flow inside the reactor model was carried out using 
the tracer method (contrastive passive admixture), for which propane was chosen. The 
presence of this gas in small quantities in the air under convective high-turbulent flow does 
not affect the flow. 
Injection of propane to the experimental aerodynamic model allows us to visually study the 
characteristics of the coolant in the process of inter loop mixing [15-17]. The volume con-
centration of propane in the air stream did not exceed 1200 ppm (tracer injection pipe), 
which is significantly less than the concentration of explosive mixture formation (at least 
17000 ppm). But such values can be measured with satisfactory accuracy (±15 ppm) using 
a gas analyzer, the principle of which is based on measuring the amount of absorption of 
infrared radiation in a measuring cell through which the measured gas-air mixture is 
pumped. 
To study the mixing process of loop coolant flows in the model of a nuclear reactor, two ar-
eas of the model were selected as characteristic areas: annular channel and pressure 
chamber (Fig. 4). 



 
Fig. 4. Areas of the model selected for research 

 
The gas concentration in the annular channel was measured using a L-shaped tube Ø4×0.5 
mm, introduced into the model through fittings located on the model body at three height 
levels (height step 220 mm). At each level along the perimeter, measurements were carried 
out at 20 points separated by 20 degrees from each other. The L-shaped probe was posi-
tioned on the average diameter of the annular channel. 
The gas concentration in the pressure chamber was measured using direct probes from 
Ø4×0.5 mm tubes installed at the entrances to the channels simulating the reactor core. 

5. Visualization of the coolant flow in the annular chan-
nel of the reactor model 
The results were processed in the Matlab software package, which has an extensive library 
of mathematical and graphical data processing functions, and also allows creating user 
scripts and compiling applications for Windows based on them. 
This visualization of the tracer distribution in the annular channel consisted of the follow-
ing: graphical construction of a cylindrical surface with dimensions corresponding to the 
model geometry; interpolation of numerical values of the tracer concentration measured at 
individual points on this surface; drawing as a 3D contour plot. 
This procedure can be implemented in the Matlab program as follows: 
 

a = meshgrid(linspace(0, 2*pi, astep),... 

     linspace(0, 2*pi, astep)); 

X = R.*cos(a); 

Y = R.*sin(a); 

Z = meshgrid(linspace(Zmin, Zmax, Zstep),... 

    linspace(Zmin, Zmax, Zstep))'; 

C = griddata(dat(:,1),dat(:,2),dat(:,3),... 

    (180/pi).*a,Z,'cubic'); 

surf(X,Y,Z,C,'EdgeColor','none'); 

colormap('jet') 

 
a – the variable with the coordinates of mesh nodes along the angular coordinate; 
astep – step of arrangement of grid nodes by angular coordinate; 

X, Y, Z - coordinates of grid nodes in the Cartesian system; 



R – radius of the cylindrical surface; 

Zmin, Zmax, Zstep – minimum and maximum values of the Z coordinate and the 
height step of the grid; 
C – interpolated field of the tracer concentration; 
dat – a matrix containing experimental data (1st column – angular coordinates of meas-
urement points, 2nd column - coordinates of points in height, 3rd column - measured values 
of tracer concentration). 
The result of this procedure is shown in Fig. 5. 
 

 
Fig. 5. Visualization of the experimental tracer distribution in the model's annular channel 

(Re=20000; color-over by volume concentration values in ppm). 
 
From Fig. 5, it can be seen that the coolant flow from the tracer inlet pipe moves in spiral 
in the descending annular channel. To quantify the angle of rotation of the flow, this sur-
face was unfolded to a plane. The result of this operation is shown in Fig. 6. 
 

 
Fig. 6. Visualization of the experimental tracer distribution in the model's annular channel 



The results of visualization allowed us to determine that the flow of the coolant from the 
circulation loop with the tracer immediately at entrance to the descending annular channel 
is displaced by an angle of ~ 30-35 degrees. This is probably caused by the impact of the 
flow against the inner wall of the annular chamber. Then the downward movement occurs 
in a spiral, while the intensity of the twist remains constant throughout the descent annu-
lar channel.  
Before entering the lower pressure chamber, the maximum concentration of the tracer 
shifted by an angle of 125-130 degrees from the axis of the inlet pipe. There is no intensive 
blurring of the tracer spot across the flow in the annular chamber, which indicates a small 
influence of turbulent diffusion compared to convective transport. There are also no large 
transverse vortices in this area. 

6. Visualization of the coolant mixing in the lower pres-
sure chamber 
Graphical visualization of the flow in the pressure chamber of the reactor model consisted 
in constructing a cartogram of the tracer concentration distribution at the entrance to the 
core simulation channels. To do this, layers containing graphical objects describing the 
model construction were applied sequentially, and were colored. The paint color of the 
simulator channels was determined depending on the set minimum and maximum values 
of the tracer concentration in accordance with the standard scale in Matlab color-

map('jet'). The result of this procedure is shown in Fig. 7. 
 

 
Fig. 7. Visualization of the tracer concentration field at the entrance to the core simulation 

channels. 
 
The analysis of Fig. 7 allowed us to determine that the maximum value of the tracer volume 
concentration at the entrance to the core simulation channels is rotated at an angle of 
~190-200 degrees from the inlet pipe. In comparison with the tracer distribution in the de-
scending annular channel, the flow in the pressure chamber made an additional twist at an 
angle of 60-70 degrees. At the same time, the maximum value of the tracer concentration 
remains in the peripheral channels, which indicates a relatively weak mixing in the lower 
chamber. The rotation of the tracer spot may indicate the presence of a large axial vortex. 



7. Conclusion 
Using the method of injection of a passive contrast tracer  to one of the four coolant circu-
lation loops, the values of the tracer volume concentration were obtained at separate points 
in the model nuclear reactor pressure vessel. 
The tracer concentration fields obtained during visualization and data processing allowed 
us to analyze the features of movement and mixing of the coolant loop flows. The experi-
mental values of the concentration of the tracer can be used to validate the calculations in 
the programs of computational fluid dynamics and calibration of their mathematical mod-
els. 
The developed method of visualization of experimental results obtained at the test facility 
was implemented in the Matlab software package and compiled into an executable graph-
ical application for Windows [18]. 
In future, after upgrading the experimental model and including it in the large-scale ther-
mophysical stand "Stand for research of mixing of non-isothermal flows" of the NNSTU, 
the developed application will be used for visualization and analysis of the temperature 
field of the coolant. This will significantly reduce the time of processing and analysis of the 
received information due to its visual presentation in automated mode. 
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